閑話 黄金比とフィボナッチ数列 その8

前回お話しした数列は、初項と第2項が与えれれていて第3項以降の各項は前の2項の和になっている数列でした。
ここで、初項と第2項を1とした数列{1,1,2,3,5,8,13,21,34,55,89,144,233・・・}はフィボナッチ数列として有名です。

・黄金比とフィボナッチ数列との関係を見てみよう。

黄金比 Φ の連分数による表現
$$\phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}$$  
を使って Φ の逐次近似値(連分数を途中で切りながら)を計算してみましょう。

1=1
$$1+\frac{1}{1}=\frac{2}{1}$$
$$1+\frac{1}{1+1}=1+\frac{1}{2}=\frac{3}{2}$$
$$1+\frac{1}{1+\frac{1}{1+1 } }=1+\frac{1}{\frac{3}{2 } }=\frac{5}{3}$$
$$1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1 } } }=1+\frac{1}{\frac{5}{3 } }=\frac{8}{5}$$
$$1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1 } } } }=1+\frac{1}{\frac{8}{5 } }=\frac{13}{8}$$

問 上記の黄金比に至る逐次近似値とフィボナッチ数列の連続する各項の比との関連性について考察してください。