2018年7月の記事一覧

閑話 その9 フィボナッチ数列と黄金比 

フィボナッチ数列{1,1,2,3,5,8,13,21,34・・・}と黄金比 Φ には、いろいろな関係がありそうです。
フィボナッチ数列 { Fn } の定義式は F1=1、F2=2、 Fn= Fn-1 + Fn-2  (n≧3)(以下、この関係式を漸化式とよぶ。)でした。定義式からフィボナッチ数列の各項はすべて整数であることは明らかですね。このとき、n番目の数をいちいち足していかなくても求められると便利ですよね。つまり第n項を直接求められる式がほしいわけです。数学では、数列の隣接3項間漸化式から一般項を求める問題を解いた人にはお馴染みですが、ちょっと考えてみましょう。
フィボナッチ数列の漸化式 Fn Fn-1 + Fn-2 ・・・①に準じて rn = rn-1 + rn-2 ・・・②を満たす(ゼロでない)r の累乗 rn の数列が存在するか調べてみましょう。②の両辺を rn-2 で割ると、 r = r + 1 つまり  r - r - 1 = 0

$$r=\frac{1+\sqrt{5 } }{2},\frac{1-\sqrt{5 } }{2}$$ ここで、閑話その6の表記を使って $$\phi=\frac{1+\sqrt{5 } }{2},\phi'=\frac{1-\sqrt{5 } }{2}$$

とすると r = Φ または r = Φ’ のとき、累乗 rn はフィボナッチ数列の漸化式①を満たすということです。このことから、
問1 A と B を定数とするとき、任意の数列 Kn = A Φ+B Φ’ ・・・③も①の漸化式を満たしていることを確かめてください。
問2 ここで K1K2 を 1として、A と B を求めてください。

以上のことと、$$\sqr{5}=\phi-\phi'$$ を使うと、フィボナッチ数列の一般項 Fn は、

$$F_n=\frac{\phi^n-\phi'^n}{\phi-\phi'}=\frac{1}{\sqr{5 } }\left[\left(\frac{1+\sqr{5 } }{2}\right)^n-\left(\frac{1-\sqr{5 } }{2}\right)^n\right]$$  ・・・④


となります。この④の式からはフィボナッチ数列の各項が、整数になるようには見えませんね。
問3 ④の式で最初の何項か実際に(工夫して)計算してみましょう。(その6の復習)

県立移管120周年記念に向けて

7月28日(土)に台風が接近するなか、午前中に鹿山会役員会が、午後に120周年記念事業実行委員会の会議が行われました。どちらも、大きな議題は120周年記念事業に関しての情報共有と取り組み状況の確認(特に来年11月9日に行われる記念式典や記念誌発行について現在までの準備状況など)を中心に課題の洗い出しとそれらへの対応方法等について話し合われました。120周年記念事業は、学校にとって大きな節目となるとても大切な事業です。これから準備について本格的に動きだすこととなりますので、PTA・鹿山会の皆様には、ご支援、ご協力のほどよろしくお願いいたします。

オーストラリア派遣

aus1aus2昨日、成田空港にオーストラリアでのSGH海外研修に参加する生徒諸君のお見送りに行ってきました。この研修では20名の生徒を坂本先生と内山先生が引率をしてくださります。
お見送りにいらしゃったご家族や野村教頭先生が見守るなか、チェックイン前のセレモニーでは、NAA(成田国際空港株式会社)でご勤務されている本校OBの方々からも激励のお言葉をいただきました。
生徒はNambour Christian College での研修を中心にホームスティをしながら現地の方々との交流を深めます。そのなかで、いろいろな見方、考え方や価値観に触れることでオーストラリアでSGHの課題研究も深めてまいります。研修が生徒一人一人にとって有意義なものとなり、ひと回り大きく成長して元気に帰ってくることを期待します。

生徒会役員任命式・壮行会

sokokai1sokokai2今日は、本日から任期開始となる新生徒会執行部役員の任命式と、この夏の全国高等学校総合体育大会(インターハイ)の岐阜県で開催されるカヌー競技や第42回全国高等学校総合文化祭の将棋や工芸に千葉県の代表として出場・参加出展する生徒の諸君への壮行会が行われました。壮行会では、新生徒会の増田会長から激励の言葉が贈られました。その後、野球応援でも千葉県一の応援をしてくれたラグビー部を中心とする応援委員会からエールと応援歌が贈られました。猛暑続きであったため、先生・生徒の皆さんの協力で時間は15分間とテンポよくコンパクトに行われ大変心のこもった良い会だったと思います。皆さんの健闘を祈ります。

閑話 黄金比とフィボナッチ数列 その8

前回お話しした数列は、初項と第2項が与えれれていて第3項以降の各項は前の2項の和になっている数列でした。
ここで、初項と第2項を1とした数列{1,1,2,3,5,8,13,21,34,55,89,144,233・・・}はフィボナッチ数列として有名です。

・黄金比とフィボナッチ数列との関係を見てみよう。

黄金比 Φ の連分数による表現
$$\phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}$$  
を使って Φ の逐次近似値(連分数を途中で切りながら)を計算してみましょう。

1=1
$$1+\frac{1}{1}=\frac{2}{1}$$
$$1+\frac{1}{1+1}=1+\frac{1}{2}=\frac{3}{2}$$
$$1+\frac{1}{1+\frac{1}{1+1 } }=1+\frac{1}{\frac{3}{2 } }=\frac{5}{3}$$
$$1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1 } } }=1+\frac{1}{\frac{5}{3 } }=\frac{8}{5}$$
$$1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1 } } } }=1+\frac{1}{\frac{8}{5 } }=\frac{13}{8}$$

問 上記の黄金比に至る逐次近似値とフィボナッチ数列の連続する各項の比との関連性について考察してください。